A phase-fitted Runge-Kutta-Nyström method for the numerical solution of initial value problems with oscillating solutions

نویسندگان

  • D. F. Papadopoulos
  • Zacharias A. Anastassi
  • Theodore E. Simos
چکیده

A new Runge-Kutta-Nyström method, with phase-lag of order infinity, for the integration of second-order periodic initial-value problems is developed in this paper. The new method is based on the Dormand and Prince RungeKutta-Nyström method of algebraic order four[1]. Numerical illustrations indicate that the new method is much more efficient than the classical one.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Trigonometrically fitted two-step obrechkoff methods for the numerical solution of periodic initial value problems

In this paper, we present a new two-step trigonometrically fitted symmetric Obrechkoff method. The method is based on the symmetric two-step Obrechkoff method, with eighth algebraic order, high phase-lag order and is constructed to solve IVPs with periodic solutions such as orbital problems. We compare the new method to some recently constructed optimized methods from the literature. The numeri...

متن کامل

Nonstandard explicit third-order Runge-Kutta method with positivity property

When one solves differential equations, modeling physical phenomena, it is of great importance to take physical constraints into account. More precisely, numerical schemes have to be designed such that discrete solutions satisfy the same constraints as exact solutions. Based on general theory for positivity, with an explicit third-order Runge-Kutta method (we will refer to it as RK3 method) pos...

متن کامل

Trigonometrically-fitted explicit four-stage fourth-order Runge–Kutta–Nyström method for the solution of initial value problems with oscillatory behavior

An explicit trigonometrically-fitted Runge–Kutta–Nyström (ETFRKN) method is constructed in this paper based on Simos technique, which exactly integrates initialvalue problems whose solutions are linear combinations of functions of the form e and e−iwx or equivalently sin(wx) and cos(wx) with w > 0 the principal frequency of the problem. The numerical results show the efficacy of the new method ...

متن کامل

A New Diagonally Implicit Runge-Kutta-Nyström Method for Periodic IVPs

A new diagonally implicit Runge-Kutta-Nyström (RKN) method is developed for the integration of initial-value problems for second-order ordinary differential equations possessing oscillatory solutions. Presented is a method which is three-stage fourth-order with dispersive order six and 'small' principal local truncation error terms and dissipation constant. The analysis of phase-lag, dissipatio...

متن کامل

Embedded 5(4) Pair Trigonometrically-Fitted Two Derivative Runge- Kutta Method with FSAL Property for Numerical Solution of Oscillatory Problems

Based on First Same As Last (FSAL) technique, an embedded trigonometrically-fitted Two Derivative Runge-Kutta method (TDRK) for the numerical solution of first order Initial Value Problems (IVPs) is developed. Using the trigonometrically-fitting technique, an embedded 5(4) pair explicit fifth-order TDRK method with a “small” principal local truncation error coefficient is derived. The numerical...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Computer Physics Communications

دوره 180  شماره 

صفحات  -

تاریخ انتشار 2009